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SUMMARY

In this paper, a critical comparison is made between experimental
and theoretical results for the serodynamic characteristics of wings at
supersonic flight speeds. As & preliminary, a brief, nonmathematical
review is given of the basic assumptions and general findings of super—
sonic wing theory in two and three dimensions. Published date from two—
dimensional pressure—distribution tests are then used to illustrate the
effects of fluid viscoslty and to assess the accuracy of linear theory
as compared with the more exact theories which are available in the two—
dimensional case. Finally, an account is presented of an NACA study,
previously unpublished, of the over-all force characteristics of three—
dimensional wings at supersonic speed. In this study, the 1ift, pitch-—
ing moment, and drag characteristics of several families of wings of
varying plan form and sectlon were measured in the wind tunnel and com—
pared with wvalues predicted by the three—-dimensional linear theory.. The
regions of agreement and disagreement between experiment.and theory are
noted and discussed.

- INTRODUCTION

The aerodynamics of wings at supersonic flight speeds 1s currently
the subject of much research and discussion. As a result of many recent
investigations, based. on the earlier work of Prandtl, Ackeret, Busemann,
and von Karman, the theory of the subject is well advanced, both as
applied to airfoil sections in two-dimensional flow and to complete, three—
dimensional wings. Experimental knowledge is, by contrast, considerably
less extensive, particularly with regard to the three-dimensional case.
There are, however, sufficient experimental data in hand to permit a rea—
sonably systematic comparison between theory and experiment. It is the
purpose of this paper to present such a comparison Insofar as the current
avallability of experimental results will allow.

1Pa.per presented at the Second International Aeronautical Conference,
Institute of the Aeronautical Sclences and The Royal Aeronautical Soclety,

New York City, May 2427, 1949,
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 THEQRETICAL CONSIDERATIONS

To provide background for those. .who are unacquainted with the funda—
mentals of supersonic wing theory, it may be useful to review briefly the
assumptions and findings of work in this field. (For a more complete dis—
cussion of the theary and a bibliography of pertinemt references, the rea.der
is referred to the Tenth Wright Brothers Lecture by Theodore von Ka.rma.n,

.reference 1.)

In the solution of problems in supersonic wing theory, the following
assumptions are usually made concerning the flow field which surrounds
the wing:

(a) The fluid medium is continuous and homogensous.

(b) The fluid has the thermodynamic characteristics of a
perfect gas with constant specific heats.

(c) Viscosity and thermal conductivity are vé.nishingly small,
(3) External forces (such as gravity) are negligible.

For flight at ordinary altitudes and air temperatures, the most drastic
of these assumptions is that of vanishingly small viscosity and thermal
conductivity. This assumption allows the effects of fluid friction and
heat transfer to be disregarded except as they are necessary to explain
the existence of shock waves and vortices within the flow field. The

assumption thus retains the essential features of supersonic flow as it
is known to occur away from the immediate vicinity of the wing surface.
It results, however, in the omission of the friction drag and of any

changes in pressure distribution caused by growth or separation of the

boundary lq.yer .

On the basls of the faregoing assumptions, it is possible to obtain
explicit relations for the sudden changes in flow which occur across a
shock wave as well as a differential equation for the gradual changes
which take place in the regions between such waves. When expressed with
the geometrical coordinates as the independent variables, the differen—
tial equation governing the flow in the region between shock waves is
nonlinear. It is therefore difficult to apply rigorously to most problems

of practical interest.

Fortunately, in the special case of an airfoil section in a two—
dimensional supersonic stream, results can be obtained with a high degree
of mathematical rigor despite the nonlinearity of the governing differ—
ential equation. For reasons of mathematical practicality, it has been
usual to restrict the solutions to instances in which the local velocity
in the flow field is everywhere supersonic. This limits the solutions to

airfolls with a sharp leading edge and to angles of attack and free—stream
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Mach numbers such that the shock wave from the leading edge 1s attached

to the airfoil and the flow on the downstream side of the wave is supersonic.
(It has also been customary to neglect the rotation of the fluid particles
which will exist aft of the leading-edge wave in those cases in which the
wave 1s curved, although this approximation is not essential.) Within
these restrictions, section characteristics can be calculated to a high
degree of precision for sections of even appreciable thickness. The method
of computation reduces in practice to a stepwise application of the known
relations for the compression through a shock wave and for the expansion
around a convex corner. The procedure has therefore been termed the
"ghock—expansion” method (see, for example, reference 2). TFor rapid cal—
culations, more restricted methods, such as Ackeret's linear theory
(references 3 and 4) and Busemann's second—order theory (references 5, 6,
and 7), cen be obtained by means of series approximation to the complete
equations for the shock wave and the expansion.

In the more practical case of a complete, three—dimensional wing,
the general mathematical problem is forbiddingly complex, and it is nec—
essary to simplify the nonlinear differential equation at the outset in
order to obtain a solution. To accomplish this, it is assumed that the
local velocity at all points In the flow field differs only slightly in
magnitude and direction from the velocity of the undisturbed stream. This
implies, in effect, that the thickness, camber, and angle of attack of
the wing are-small. With this approximation, the complete, nonlinear dif-—
ferential equation reduces, through the omission of terms of higher than
the first order in the flow disturbances, to a linear equation which can
be solved by established mathematical methods. On the basls of this equa—
tion, an extensive body of theory has heen formulated covering a wide
range of practical wings. For the present it will suffice to mention
certain general concepts and results of this theory. Examples of specific
calculations will be presented in the course of the later discussion.

A fundamental result of the linear theory, well known by now, is the
concept of the Mach cone. According to this concept, the effect of a
given disturbance in a wniform supersonic stream is felt only within the
interior of a circular cone with vertex located at the point of the dis—
turbance and axis extending downstream parallel to the. original flow.

The geometry of the cone is determined by the requirement that the component
of free—stream veloclty normal to the surface of the cone is equal to the
speed of sound in the undisturbed stream. It follows that the semi—

vertex angle of the cone 1s a function of the free—stream Mach number only.
These conslderations apply not only to the effects of an isolated dis—
turbance but to the region of influence of each disturbance in a dis-—
tributed system as well.

The concept of the Mach cone has immediate implications with regard
to the aerodynamic problems of three—dimensional wings. This is 1llus-—
trated in figure 1, which shows certain features of the flow over three
flat 1ifting surfaces of representative plan form. In the case of the
rectangular plan form A, for example, it follows from the concept of the
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Mach cone that, to a first approximatiom,, the effects of the finite span
are confined to the regions of the wing lying within the cone from the
leading edge of each tip. The flow over the remainder of the wing (shown
shaded) is identical with the two—-dimensional flow over a wing of :Ln.f‘inite
span, On the moderately swept plan form B, the flow over the shaded’
regions is, by the same reasoning, unaffected by the presence of either
the tips or root of the wing. Within these regions the flow can be treated
as essentially two-dimensional by evaluating the velocity and .the deflec—
tion angle in the dlrection normal to the leading edge. On the highly
swept plan form C, all of the wing is within the fields of influence of
the root and tips, and no regions of purely two—dimensional flow are to
be expected.

Carrying these considerations a step farther, we may also examine
the effect which the relationship between the plan form and the Mach
cones has upon the chordwise 1ift distribution for the three wings. On
both wings A and B, where the leading edge lies ahead of the Mach cones
from the corners of the plan form, the Mach number of the component of
free—stream velocity normal to the leading edge is greater than one. For
reasons Jjust examined, the 1ift distribution at the spanwise stations for
which it is shown will be the same as the distribution over a flat 1ift-
ing surface in a two-dimensional supersonic stream. Characteristic features
of this distribution are that the intensity of 1ift at the leading edge is
finite and has zero gradient in the chordwise direction. On plan form C,
where the leading edge is swept behind the Mach cone, the Mach number of
the flow component normal to the leading edge is less than one. It develops
from the theory that in this case the 1ift distribution near the edge
resembles the thecretical distribution predicted by linear theory for a flat
1lifting surface in a purely subsonic flow — that is, the 1lift intemsity
tends to an infinite value at the leading edge and drops off rapidly along

{he chord toward the trailing edge.

The foregoing differences in 1ift distribution provide one example
of a general principle, the significance of which was first noted by
R. T. Jones (reference 8). This principle, which arises throughout the
study of wings by the linear theory, can be stated as follows: When the
component of free—stréam velocity normal to a wing element (i.e., leading
edge, ridge line, or trailing edge) is greater than the speed of sound,
the theoretical flow in the vicinity of the element has the essential char—
acter of the two—dimensional supersonic flow about an element of the same
gecmetric type; similarly, when the velocity component normal to the element
is less than the speed of sound, the theoretical local flow resembles
that which prevails in the two-dimensional subsonic case. Because of the
utility of this general result, it ha.s become customa.ry to describe the
wing elements themselves as either "supersonic" or "subsonic." To
determine which category an element occupies, it is cbviously sufficient,
as in figure 1, to note whether it is swept ahead of or behind the Mach
cone. It is a.pparent that a wing element may change from one classi-—
fication to the.other as 1ts orientation relative to the Mach cone 1is
changed. This can be brought about by variation in either the free-stream

Mach number or the geometry of the wing. ) ,
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As a result of the inherent differences in the flow about supersonic
and subsonic elements, theoretical calculations for three-dimensional
wings indicate marked and interesting changes in the flight characteristics
with changes in Mach number or wing gecmetry. By studying these effects,
wing shapes can be found which afford optimm aeroiynamic characteristics
for a given flight condition. The results of such studies, indeed, provide
a valuwable guidance to the aircraft designer. 1In anticipation of the experi—
mental results to be presented later, however, a word of caution ies in order
here. As exemplified in figure 1, the differences in theoretical pressure
distribution between a supersonic and subsonic element may be characterized
by large differences in chordwise pressure gradient. These differences
may, in a real, viscous medium, give rise to corresponding differences in
boundary—layer flow and hence to aerodynamic effects which are beyond the
scope of the inviscid theory. As a result, the true variation of the wing
characteristics with change in Mach number or wing geometry may be con-—
siderably different from that predicted by the theory. The later experi-—
mental results with regard to the drag of triangular wings supply an excellent
example of such an effect. ’ )

In anticipation of the experimental data, it should also be pointed
out that the concepts and results of the linear theory, based as they are
upon the assumption of small disturbances, constitute only a first—order
epproximation to the truth even for the supposedly inviscid gas. When
disturbances of appreciable magnitude are considered, the previous concept
of a Mach cone traversing the entire flow field is no longer tenable. On
the contrary, a given disturbance in a supersonic stream is then confined,
not to the interior of a conse, but to the “Interior of some more complex
surface whose shape and position depend upon the magnitude of the disturb—
ance as well as upon other conditions in the general flow field. It follows
that the regions of influence of a wing tip or wing root are not strictly
as shown in figure 1, and the previous distinction between a supersonic and
subsonic element cannot be applied without qualification. .The ldeas of
the linear theory with regard to pressure propagation, therefore, should
not be taken literally nor should deductions based upon them be accepted
without reservation.

It 1s apparent from these brief theoretical considerations that
calculations by the linear theory may be expected to fall short of the
truth for two primary reasons. These are

(a) the omission from the theory of all viscous phenomena, and

(b) +the theoretical assumption that the flow disturbances are
small,

The importance of these approximations cannot be assessed at present from
purely theoretical knowledge. Some insight is provided, however, by the
available experimental results.
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PRESSURE-DISTRIBUTION MEASUREMENTS IN TWO DIMENSIONS

It is desirable to begin the comparison between theory and exper—
iment by examining some typical pressure-distribution results for an air—
foll section In a two-dimensional supersonic gtream. Because of the
availability in the two-dimensional case of theories of greater accuracy
than the linear theory, it is possible here to distinguish between the
effects of viscosity and the effects of the terms neglected through the
assumption of small disturbances.

A typical two-dimensional pressure distribution is given in figure 2,
which shows the calculated and measured results for a lO—percent—thick,
symmetrical, biconvex section at a Mach number of 2.13 and an angle of
attack of 10°. The local pressure coefficient is plotted as a function
of the chordwise position on the airfoil, positive wvalues being plotted
below the horizontal axis and negative wvalues above.. The theoretical pres—
sure distributions given by the linear and shock—expansion theories are
shown by curves as noted. The individual circles indicate experimental
points obtained from the results of Ferri.(reference 9).

The data of figure 2 show that considerable accuracy is gained by
golng from the linear to the shock—expansion theory. Over most of the air—
foll section, the linear theory predicts the correct sense for the pressure
gradient, but the quantitative agreement between the curve given by this
theory and the experimental points is poor compared with the excellent
check given by the shock—expansion method. Over the rear 40 percent of the
upper surface, neither of the theories agrees with the trend exhibited by
experiment.

The discrepancy between the theoretical pressure distributions cal-
culated by the linear and shock-expansion theories 1is of importance pri-
marily for its effect upon the chordwise distribution of lift. Examination
of figure 2 reveals that the total 1ift of the section, as approximated
by the area between the curves for the upper and lower surfaces, is given
almost identically by the two theories. This illustrates the fact that in
the two-dimensional case the higher—order terms neglected in the linear
theory have little effect upon the over-all 1ift of the section. They do,
however, serve to concentrate the 1ift farther forward on the chord than the
linear theory would predict. This effect is essentially a consequence of
the airfoil thickness and diminishes as the thickness is reduced.

The failure of even the shock—expansion theory to predict the pressure
variation over the rear part of the upper surface is due to shock-wave,
boundary—layer interaction (reference 9). In the idealized, inviscid
fluid, the two-dimensional flow over a lifting airfoil at supersonic speeds
is characterized by an oblique compression wave originating on the upper
surface at the trailing edge. In the real, viscous fluid, this flow-pattern
is modified by an interaction between the oblique wave and the viscous
boundary layer on the airfoil surface. The boundary layer separates fram
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the upper surface some distance forward of the trailing edge, with the
formation of a weak compression wave at the separation point and a conse—
quent Increase in pressure between this point and the trailing edge. There
is, as a result, a noticeable loss of 1lift over the rear of the airfoil.

The foregoing results, of course, imply certain deviations of the true
aerodynamic coefficients from the curves predicted by the linear theory.
For the reasons outlined, the higher-—order pressure effects neglected in
the linear theory have little influence upon the lift——curve slope, although
they do result in a relatively forward shift of the center of pressure
(or aerodynamic center). The interaction between the trailing shock wave
and the viscous boundary layer acts both to decrease the lift——curve slope
slightly and to displace the center of pressure still farther forward.
Viscous friction, the effects of which are not visible in the pressure
distribution, tends to increase the true drag relative to the calculated
value, though this tendency is opposed here by the unpredicted increase
in pressure near the trailing edge as the result of the shock-wave, boundary—
layer Interaction. All of these effects are apparent in the available
force—test data faor airfoils in two-dimensional flow (reference 9 and 10).
As will be seen, they are also observed in the results for three-dimensional

wings, at least for those cages in which the wing elements are predominately
supersonic.

FORCE TESTS IN THREE DIMENSIONS -

The discussion to this point has been confined to theoretical con-—
siderations and to a comparison between theoretical and experimental
results for a typical airfoil section In two-dimensional flow. The remain—
der of the paper will be concerned with a more general comparison between
theory and experiment for complete, three—dlmensional wings.

The results upon which this comparison is based were obtainsd in 1946
as part of an investigation of wing characteristics conducted at the
Ames Aeronautical Laboratory of the NACA. The portion of the general
investigation to be discussed here was concerned with force tests at
supersonic speeds of approximately 30 wing models chosen to cover a wide
range of geometric variables and to include examples with both supersonic
and subsonic wing elements. The experimental work was performed in the
Ames 1- by 3—foot supersonic wind tunnel No. 1, which 1s a continuous—
flow, closed—return tunnel of approximately 10,000 horsepower.?

The wing models were supported in the wini tunnel on a slender body
of revolution mounted directly ahead of a three—component, strain—gage

2\s with most experimental investigations, many people contributed to the
final results of the study. Particular credit is due, however, to
Jack N. Nielsen, Milton D. Van Dyke, and Frederick H. Matteson, who
participated in the analysis of the results, to Robert T. Madden,
Richard Scherrer, and John A. Blackburn, who conducted the wind—tunnel
tests, and to Albert G. Oswald, who was in charge of the wind—tunnel-
instrumentation.
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balance as shown in figure 3. For the ma jority of the models, the airfoil
section taken in the streamwise direction was a 5—percent—thick isosceles
triangle, that is, a triangle with maximum thickness of 5 percent located

at midchord. This cambered section was chosen primarily for ease of con—
struction. The models were made of hardened, ground tool steel with the
leading and trailing edges maintained sharp to less than a .0.00l—inch radius,
except for certain tests in which the leading eilge wag purposely rounded.
The support body, which was the same for all models, was kept as small as
possible consistent with the requirement that it could be used with a wide
range of plan forms.

Because of the presence of the support body, the experimental results
to be presented apply, strictly speaking, to wing-body combinations rather
than to the wings alone. The theoretical curves are, on the other hand,
for simple, isolated wings. A detailed examination of the interference
problem indicates that, for the particular body used here, the effects of
the body are small insofar as the 1ift and pitching moment are concerned.
The influence on minimum drag may, however, be considerable. The measured
values of the minimum dreg coefficient must therefore be regarded as of
primarily qualitative significance in comparison with theory.

Because of limitations of time and space, it is obviously impossible
in a paper of this kind to discuss more than a small portion of the results
obtained in the investigation. The data presented will therefore be chosen
primarily for their value in illustrating certain general ideas or typical
conclusions. This approach will result in the omission of many interesting
items dear to the heart of. the experimentalist, but it is hoped that an
adequate over-all picture of the significant results will emerge. In ‘all
of the figures presented, the aerodynamic coefficients will be referred to
the plan—form area of the wing, including that portion of the plan form
enclosed by the support body. All of the results are for a free—stream
Mach number of 1.53 and a test Reynolds number of 0.75 million based upon
the mean geometric chord of the wing. TUnless stated otherwise, it may be
assumed that the results were obtained.using models with the cambered,
isosceles—triangle section previously described.

In the discussion of the results, it is convenient to consider first
the 1ift and pitching moment, since these characteristics depend primarily
upon the distribution of normal pressure over the surface of the wing.

The consideration of drag, which depends upon the frictlonal forces as
well, will be deferred until later.

1ift and Pitching Moment

According to the linear theory, the lift and pitching-moment curves
for any given wing are each a straight line. At a given Mach number, the
slope of the line depends solely upon the plan form of the wing and is
independent of the camber and thickness. . The intercept — that is, the
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angle of zero 1ift or the moment at zero 1ift — is a function of both the
camber snd the plan form, but is independent of the wing thickness. Only
the slope of the curves will be discussed here, since this is the char—
acteristic of greatest practical Importance.

Lift-—curve slope.— The nature of the agreement between theory and
experiment with regard to the lift—curve slope for unswept wings is 1llus—
trated in figure 4. Here dCp/da 1s plotted as a functlon of aspect ratio
for a series of four unswept wings having a common taper ratio of 0.5.

The wing corresponding to each test point is indicated by a small sketch,
which shows also the trace of the Mach cones from the forwardmost polnt
of the wing. On thls and later figures, the varlatlon predicted by the
linear theory 1s shown over as wlde a range as 1s practicable on the basis
of existing computational methods.

The agreement between theory and experiment in figure 4 is seen to
be excellent over the entire range of aspect ratlos. The exact colncidence
for aspect ratios from 2 to 6 is, in fact, too good to be absolutely true.
It appears likely that the secondary effects of viscosity and support-body
interference, which must certalnly be present in some degree, are completely
compensating for these wings. The decrease in lift—curve slope observed
both experimentally and thearetlcally at the low aspect ratios is caused
by a loss of 11ft within the Mach cones which originate at the leading edge
of the wing tips. As the aspect ratio is reduced, a greater and greater
percentage of the plan form is included within these Mach cones, with a
resultling decrease in the 1ifting effectiveness of the wing.

The effect of wing sweep on the slope of the 1lift curve is illustrated
in figure 5. Here dCL/da 1s shown as a function of the sweep angle at
the midchord line for a series of seven wings also of taper ratio 0.5. The
unswept wing of this series is identical with the aspect—ratio—l wing of
the previous figure. In the design of the swept wings,'the aspect ratio
was made to decrease as the coslne of the angle of sweep, since wings of
constant aspect ratio did not appear structurally feasible. The sweep
angles were chosen to provide representative plan forms with both supersonic
and subsonic leading and trailing edges. The wing of h3 sweepback was
designed to have its leading edge coincident with the Mach cone, which has
a sweep angle of 49.2° at the test Mach mumber of 1.53. Since the sweep
angle of these wings is specified at the midchord line, a given swept—
forward wing can be obtained from the corresponding swept-back wing by a
simple reversal of the direction of motion.

The agreement between theory and experiment in figure 5 is almost
exact over the range of sweep angles from 0° to 43° sweepforward, the
forwardmost limit of the theoretical results. For all of the swept-back
wings, the experimental slopes fall consistently below the theoretical
values by from 8 to 10 percent. In both the swept-back and swept-forward -
direction, the experimental results exhibit a marked reduction in dCL/da
as the edges of the plan form are swept increasingly farther behind the
Mach cone. This trend is predicted by the theoretical curve in the
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swept-back case and would undoubtedly be confirmed for the swept—forward
wings if complete theoretical results were availeble.® It is interesting
to note, incidentally, that the 43° swept-back wing, which has its leading
edge coincident with the Mach cone, shows no departure from the general
trend of the experimental results.

For the range of sweep angles between *43°, the theoretical curve of
figure 5 is exactly symmetrical about the verticeal axis. This means that,
within this range, the theoretical lift-curve slope of a plan form of the
present series is unchanged by a reversal of the direction of motion. A
~ slmilar result has been obtained by several authors for other, more general

classes of wings (see, for example, references 1l and 12), though the limits
of gene};a.li'by have not, to the writer's knowledge, been completely estab—
lished. The observed departure of the experimental results from the
theoretical symmetry may be due to differences in aeroelastic deformation
between corresponding swept—forward and swept-back wings or to asymmetry
in the effects of other secondery factors such as viscosity and support—

body interference.

To summarize, we may say that the agreement between experiment and
linear theory with regard to the lift-curve slope of three-dimensional
wings is satisfactory for most practical purposes. In view of the sit—
vation previously observed in the two-dimensional case, however, it cannot
be assumed that agreement in the integrated 1lift implies complete agreement
in the details of the 1lift distribution.

Moment—curve slope.— Further indication that the details of the flow
over the wings are, as In the two-dlimensional case, somewhat different
from the predictions of the linear theory is given by the pitching-moment
data. Figure 6 shows the moment—curve slope as a function of aspect ratio
for the series of unswept wings previously discussed. The moment coefficlent

‘SFor the range of sweep angles from 43° to 60° sweepback, the shape of the
theoretical curve is somewhat approximate. Strictly speaking, small dis—
continuities in the slope of the curve would be expected at approximately
430 and 55° where the leading edge and trailing edge of the plan form coin-
cide, respectively, with the Mach cone. No attempt was made to determine
these discontinuities, the theoretical curve being faired smoothly

4 through the available calculated points.

Since the present paper was written, the theoretical result observed here
has been established with complete genmerality with regard to plan form
by Clinton E. Brown of The langley Aeronautical Iaboratory of the WACA.
(See Brown, Clinton E.: The Reversibility Theorem for Thin Airfoils in

Subsonic and Supersonic Flow. NACA TN 1944, 1949.) According to Brown's
proof, which is based upon previous work by Max M. Munk, the theoretical
lift—curve slope of a given wing is, to the first order, invarient with
respect to a reversal of the direction of motion, irrespective of the

Mach number or shape of the plan form.
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is here taken about the centroid of plan—form area, with the mean aerody—
namic chord as the reference length. The moment—curve slope is thus an
epproximate measure of the displacement of the aerodynamic center of the
wing forward of the centroid of area, expressed as a fraction of the mean
aerodynamic chord.

It can be seen from figure 6 that the linear theory predicts a progress—
sively forward displacement of the aerodynamic center as the aspect ratio
is reduced. As in the case of the lift—curve slope, this variation is due
to the loss of 1lift which occurs over the rear portion of the wing within
the Mach cones from the tips. The trend of the experimental values is in
agreemsnt with the theoretical curve, but the forward displacement is
uniformly greater than the theory predicts. The reason for this discrep—
ancy becomes apparent if we imagine the wing series of figure 6 to be
extended to Indefinitely high aspect ratios. In the limit of infinite
aspect ratio, the flow over the wing would be purely two—dimesnsional, and
the theoretical characteristics would be simply those of the wing section.
For the present isosceles—triangle section, the walues of de/dCL given by
the linear and shock—expansion theories are as indicated by the two hori-—-
zontal lines to the right. The theoretical curve for the finite—span wings,
of course, approaches the linear section value as an asymptote. If only
nonviscous effects were important in the experiments, the measured curve
would. be expected to approach the section value predicted by the shock—
expansion method. The fact that it seems to approach an asymptote above
this latter value is consistent with the occurrence of shock wave, bounjary—
layer interaction near the supersonic trailing edge as previously observed
in the two—-dimensional results (fig. 2). We may thus infer that the dis—
crepancy between experiment and linear theory over the entire range of
aspect ratios is due to a combination of both higher—order pressure effects’
and fluid viscosity.

The effect of sweep on the moment-curve slope is shown in figure 7
for the same series of wings used before. It is apparent that here ex—
periment and theory agree neither quantitatively nor qualitatively. TFor
the unswept wing, the observed discrepancy can be accounted for as explained
in connection with figure 6. The disagreement in the variation with angle
of sweep is, however, difficult to reconcile on the basis of present knowledge.
In general, the effects of boundary—layer separation may be expected to have
a major influence on the moment characteristics of swept wings, particularly
in those cases in which the wing elements are predominately subsonic. The
possible importance of the higher—order pressure effects should not be over—
looked, however. It can be shown from quite general considerations that the
calculation by the linear theory of the aerodynamic—center position for any
given wing is subJject to a possible error of the same order of magnitude
as the percent thickness of the airfoil section. For this reason, the
development of a reasomably general, second—order wing theory may prove
essential to a complete understanding of the pitching-moment problem.
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Drag

The calculation of wing drag by the linear theory leads to a parabolic
cuwrve of drag versus lift. The value of the minimum drag coefficient
depends, for a glven Mach number, upon the thickness, camber, and plan form
of the wing, while the 1ift coefficient at which the minimum occurs is a
function of the camber and plan form. The rise in drag as the 1lift coef:-
ficient departs from that for minimum drag depends, according to the linear
theory, upon the gecmetry of the plan form only.

Minimum drag.— A typical illustration of the effect of change in plan
form on the minimm drag is given in figure 8, which showes the variation
in minimum drag coefficient for the previous series of swept wings. The
theoretical curve shown is for the pressure drag only — that is, no attempt
has been made to estimate the skin friction. Because of the mathematical
complications introduced by camber when the edges.of the wing are subsonic,
it was not practicable here to extend the theoretical curve beyond 43° in
either direction. Within these limits, the theoretical drag increases with
increasing sweep. Extension of the curve to higher angles of sweep would
be expected to show a marked decrease in the calculated drag, similar to
the well-known results for uncambered wings swept behind the Mach cone.

. The experimental curve of figure 8 follows the general trend indicated
by theory. As the sweep Increases from zero in elther direction, the
measured drag first rises to a maximum in the vicinity of the Mach cone and
then decreases markedly with further increase in sweep. The large decrease
in drag obtained by sweeping the wing behind the Mach cone has been cbserved
by numerous investigators and need not be enlarged upon here. What is more
interesting in the present results is the failure of the experimental walues
to rise as rapidly as does the theoretical curve in the lower range of sweep
angles. For the wings of 0° and +30° sweep, the displacement of the experi—
mental points above the theoretical curve is consistent with a reasomable
allowance for skin friction and support-body interference. For the wings

of *43° sweep, however, the experimental values are almost coincident with
the theoretical. This result suggests that the linear theory may be overly
pessimistic regarding wing drag when the Mach number normal to the wing
elements is near unity. Support for this conjecture is found in the work
of Hilton and Pruden (reference 10), who report a similar situation in two-
dimensional tests of an airfoil section at moderately supersonic speeds.

It is likely that in both instances the results are due to transonic effects
which are beyond the scope of the linear theory.

The symmetry of the curves of figure 8 is also worthy of note. It has
been shown by several authors (see, for example, references 1 and 12) that,
to the order of accuracy of the linear theory, the minimm pressure drag of
a wing of any plan form is unchanged by a reversal of the direction of
motion, provided the wing section is without camber. For cambered wings,
the corresponding drag theorem is probably less general with regard to plan
form, though, as in the case of the lift—curve slope, the limits of generality
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have not yet been defined. For the present wings6 reversibility 1s readily
proven over the range of sweep angles between +43°. As a result, the theo—
retical curve of figure 8 is, like the corresponding curve for dC /da in
figure 5, exactly symmetrical over this interval. In spite of the theoret—
lcal result, however, the almost perfect symmetry of the experimental curve
of figure 8 comes as somewhat of a surprise. It might be expected that
secondary differences between corresponding swept—forward and swept-back
wings would cause an asymmetry here akin to that observed in the experimental
values of lift-curve slope.

The most interesting results with regard to drag, however, are concerned
with the effects of thickness distribution on the minimum drag of triangular
wings. At about the time the present study was beginning, theoretical
results by Puckett appeared (reference 13) which indicated that the minimum
pressure drag of an uncambered triangular wing with a subsonic leading edge
could be held to a relatively low value by proper location of the position
of ‘waximum thickness. To check these results, two triangular wings of
aspect ratio 2 were included in the present study. Both wings had an
uncambered double-—wedge section with a thickness ratio of 5 percent. In
one case the maximum thickness was located at midchord, in the other at a
position 20 percent of the chord aft of the leading edge.

The findings for these wings are summarized in figure 9, which shows
the theoretical and experimental values of the minimum drag coefficient
plotted as a function of the position of maximum thickness. The curve of -
theoretical pressure drag, which 1is representative of Puckett's results,
is divided into two parts by a sharp break In slope, located in this
instance at 42 percent of the chord. For polnts to the right of this break,
the ridge line defined by the position of maximum thickness is supersonic,
and the flow around the ridge resembles the supersonic flow around & convex
corner. Under these conditions, there is little pressure recovery over the
rear of the wing, and the drag is relatively high. For points to the left
of the break, the ridge line is subsonic, and the local flow is of the char—
acteristically subsonic type. .Under these conditions, the pressure recovery
over the rear of the wing is considerable, and the drag is corresponﬁingly
reduced. For the wings under consideration, the net result of moving the
maximum thickness forward from the 50-percent to the 20-percent station is
to reduce the computed pressure—-drag coefficient from 0.0092 to 0.005k.
Unfortunately, the measured values of the minimum drag, indicated by the
two small circles, do not follow the theoretical tremd. The apparent
effect of the forward displacement is, in fact, to increase the drag slightly.

When this result was first noted, the experimental data were suspected
of being in error. Repeated tests, however, gave identical results. It
was next thought that support-body interference might be to blame. IEsti-
mates indicated, however, that such interference could hardly account for
the large difference in the increments by which the measured total drag
exceeded the computed pressure drag for the two wings. Consideration of
the friction drag finally supplied the key to & possible explanation. To
examine this possibility, curves of theoretical total drag were computed
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on the basis of the skin—friction coefficients corresponding to completely
laminar and completely turbulent flow in the boundary layer. When this was
done, it was found, as 1s apparent in the figure, that the experimental
point for the wing with maximm thickness at 50 percent fell midway between
the two resulting curves, while that for the wing with maximum thickness

at 20 percent was slightly above the curve for completely turbulent flow.
This suggested that the failure of the experimental points to follow the
trend of the theoretical pressure drag might be due to a difference in the
extent of laminar boundary—layer flow on the two wings.

To check this hypothesis, the liquid—film method developed by Gray of
the R.A.E. for the indication of transition at subsonic speeds (reference 1)
was adapted for use in a supersonic stream. This method depends upon the
fact that the rate of evaporation of a film of liquid on the surface of a
model is, on the average, greater where the boundary layer is turbulent
than where it is laminar. In applying this principle at the Ames Iaboratory,
the model is first coated with flat black lacquer and then, immediately
prior to.installation in the tunnel, with a liquid mixture contalning
glycerin. A run is then made at the desired test condition for a sufficient
time to allow the liquid to evapcrate completely in the turbulent reglon
but remain moist over most of the laminar area. Upon removal from the tunnel,
the model is dusted with talcum powder, which adheres to the laminar but
not to the turbulent area, thus increasing the contrast for photographic
purposes and providing a clear indication of the extent of the two types
of boundary—layer flow.

The results of liquid—film tests of the two triangular wings at zero
1lift are shown in figure 10., For the wing with maximm thickness at midchord,
the region of turbulent flow, which appears as the dark region on the model,
constitutes only about half of the surface area aft of the ridge line, TFor
the wing with maximum thickness displaced forward, the turbulent region
occupies almost all of the considerably larger area which is aft of the
ridge line on this wing These results were repeated many times during the
numerous tests necessary to perfect the liquid—film technique. Examination
of calculated pressure distributions for the two wings shows in each case
excellent correlation between the experimentally determined region of
turbulent flow and the calculated region of adverse pressure gradient.
Because of the effects of support-body interference, it is not possible to
make a decisive comparison between the measured values of total drag and
theoretical values calculated on the basis of the observed areas of laminar
and turbulent flow. The evidence of the liquid—film tests, however, leaves
little doubt as to the primary reason why forward displacement of the maximum
thickness fails to produce the reduction in minimum drag predicted by the
inviscid, linear theory.

5

The white streaks extending back into the otherwise dark turbulent area are
streamers of excess liquid blown back from the laminar region. These
streamers may at times be used as a valuable indication of the direction

of flow within the boundary layer, particularly on highly swept wings.
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The foregoing result has important implications with regard to the
degree of drag reduction possible at supersonic speeds through the use of
sweepback. The relatively high pressure drag of an unswept wing at speeds
above the speed of sound is a direct result of an absence of pressure
recovery over the rear of the wing. The high pressure drag is thus asso—
ciated with a chordwise pressure gradient which is, for the most part,
favorable to the boundary—layer flow. The reduction of pressure drag by
means of sweepback depends, on the other hand, upon the presence of an
appreciable pressure recovery, or in other words, upon the existence of a
region of adverse gradient. If the region of such gradient occupies the
major portion of the wing, then, as was seen in the case of the triangular
wing with thickness forward, the detrimental effects upon the skin friction
may more than offset the gains in pressure drag. This suggests that it may
be desirable here, as in the case of the subsonic, low—drag airfoil, to look
for wing shapes which have their pressure recovery confined to a relatively
sm1l part of the wing area. Wings of this type may, in fact, prove more
practical at supersonic than at subsonic speeds, since there is indication
(reference 15) that the boundary—layer phenomens at the higher speeds may
be more conducive to long runs of laminar flow.

Drag rige and 1ift{-drag ratio.— The final question to be discussed is
that of the variation in drag with change in 1ift. As previously mentioned,

the theoretical curve of drag versus 1ift is, for any given wing, parabolic
in shape. The rise in drag as the 1ift coefficient departs from that for
minimum drag depends, for a given Mach number, on the wing plan form only
and is independent of the camber and thickness. The shape of the theo—
retical parabola for a given wing is thus identical with that for a flat
1ifting surface of the same plan form as the wing in question.

In the case of a plan form with a supersonic leading edge, the deter—
mination of the rise of the theoretical parabola is relatively simple.
In this case, which is exemplified by plan forms A and B of figure 1, the
local pressure on the flat lifting surface is everywhere finite. The
variation in drag with change in 1ift can thus be found by simple integra—
tion of the pressures acting on the top and bottom of the surface. For all
of the wings of the present study having a supersonic leading edge, the
shape of the drag curve given by the theoretical calculation shows good.
agreement with experiment.

In the case of a wing with a subsonic leading edge, the theoretical
problem is more complex. In thig case, exemplified by plan form C of
figure 1, there is a singularity — that is, an infinite value — in the
theoretical 1lift intensity at the leading edge of the equivalent flat
surface. The effect of this singularity i1s to produce a finite suction
force on the leading edge in the direction opposite to the free stream.
This force — sometimes referred to simply as "leading—edge suction" —
reduces the rise of the theoretical drag parabola below what it would be
if only the pressures on the top and bottom of the wing were considered.
Actually, of course, the details of the flow about the leading edge must,
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in any real case, be considerably different from the representations of

the linear theory, since an infinite 1ift intensity is obviously impossible.
It does not follow, however, that the theoretical forward force at the lead—
ing edge will not exist. The situation here is much the same as that
encountered at the leading edge of an airfoll section in two-dimensicnal,
incompressible flow. In this latter case, 1t is lnown, both from experiment
and from the indications of more refined calculations, that the elementary
theory gives an accurate prediction of the leading-edge suction within
certain limits of angle of attack and leading-edge radius. The range of
applicability of the linear theory as applied to swept wings at supersonic
speeds must similarly be established by careful theoretical and experi—
mental- investigation. '

The results of the present study are not, in general, conclusive
with regard to the conditions necessary for the attainment of the theo—
retical force at the subsonic edge. The data for the triangular wings,
however, do offer some possibly significant findings. These are illustrated
in figure 11, which shows the effects of change In wing section upon the
drag due to 1ift for the triangular wings previously discussed. The two
theoretical curves show the calculated drag rise with the leading-edge
suction both included and omitted. For the wing with maximum thiclkness at
midchord, the experimental curve is slightly above the theoretical curve
with leading—edge suction omitted. This is as might be expected for a
sharp-edged wing, the slight increase above the upper theoretical curve
being due possibly to an increase in friction drag with Increasing 1ift or
to support-body interference. Moving the maximum thickness forward on
the wing to the 20-percent—chord position resulted in a slight reduction in
drag despite the retention of a sharp leading edge. This gain may be due
either to the attainment of leading—edge suction as a result of the larger .
leading-edge wedge angle on this wing or to a change in the wvariation of
friction drag with 1ift. In an attempt to bring the drag rise of the second
wing down to the values indicated by the complete theory, the edge of this
wing was rounded to a radius of 0.25 percent of the chord, which is of the
same order of magnitude as the radius of an NACA low—drag section of compa-—
rable thickness ratio. This rounding of the leadling edge afforded some
benefit,. the resulting experimental values being approximately midway between
the two theoretical curves. Additional rounding — to a 0.50-percent radius
over the entire span and then to a still greater value over the outer half —
had no further effect.

The influence of the foregoing changes on the experimental curves of
lift-drag ratio is shown in figure 12, ' The wing with maximum thickness
at midchord has a value of (L/D) of about 6.3. When the maximm thick—
ness is moved forward to the 20—percent—chorc1 station, the decrease in
drag rise apparent in figure 11 more than outweighs the slight increase in
minimum drag observed in figure 9. As a result, the maximum lift-drag ratio
increases slightly. Rounding the leading edge of the second wing, while
reducing the drag rise as previously noted, does not alter the minimum drag.
As a consequence, the maximum lift-drag ratio is Increased to approximately
6.8. These results suggest that the aerodynamic gains predicted on the
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basis of the theoretical leading—edge suction can be at least partially
realized in practice. The determination of the optimum profile shape for
this purpose may, however, involve considerable detailed research.

It 1s interesting for contrast with the foregolng results to point
out the detrimental effects at the test Mach number of rounding the leading
edge on an unswept wing. In tests of an unswept, untapered wing of aspect
ratio 4, rounding the leading edge to a radius of 0.25 percent of the chord
resulted in a 2T7-percent increase in minimm drag and a consequent reduction
in maximum l1ift-drag ratio from 6 to about 5.5. The rise in the drag curve
was unaffected by the modificatiom. ’

CONCLUDING REMARKS

The foregoing results represent only a small contribution to the
body of experimental and theoretical knowledge now being accumulated con-
cerning the characteristics of wings at supersonic speeds. As is the case
with most measurements of over-all forces, the data of.the present study
raise more questions than they answer. Detailed and patient investigations
of pressure distribution and boundary-layer flow are required to develop a
rational explanation for mahy of  the observed phenomena. Several major .
problems have not heen discussed here at all, including the important question
of the adequacy of the Kutta condition to describe the real flow at a
highly swept, subsonic tralling edge. There is sufficient to be done,
indeed, to keep many investigators occupled for years to come.

Ames Aeronmautical Iaboratory,
National Advisory Commlttee for Aeronmautics,
Moffett Field, Calif., May 3, 1950.
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